BIOPOLIS, S.L. in the Press

Metabolic engineering of b-carotene in orange fruit increases its in vivo antioxidant properties

04/09/2013

E. Pons, B. Alquézar, A. Rodríguez, P. Martorell, S. Genovés, D. Ramón, M.J. Rodrigo,  L. Zacarías  and L. Peña. (2013). Metabolic engineering of b-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotechnology Journal (2013): 1–11

 

Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched

oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.

 

Orange is a major crop and an important source of health-promoting bioactive compounds.

Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could

strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene

content of orange fruit through blocking by RNA interference the expression of an endogenous

b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into

xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of

flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic

juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing

the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant

increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched

oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans

as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than

the isogenic control. This is the first example of the successful metabolic engineering of the

b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the

potential of genetic engineering for the nutritional enhancement of fruit tree crops.

 

Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops. 

Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.

Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.

Orange is a major crop and an important source of health-promoting bioactive compounds.

Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could

strengthen the fruit’s health benefits. In this work, we have afforded enhancing the b-carotene

content of orange fruit through blocking by RNA interference the expression of an endogenous

b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into

xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of

flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic

juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing

the Csb-CHX gene resulted in oranges with a deep yellow (‘golden’) phenotype and significant

increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched

oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans

as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than

the isogenic control. This is the first example of the successful metabolic engineering of the

b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the

potential of genetic engineering for the nutritional enhancement of fruit tree crops.

 

 

 

 

 

     

'Asturiana' fija la vista en el consumidor celiaco

29/11/2012 - Alimarket

Un año y medio después de la puesta en marcha del 'Proyecto Apolo', centrado en el desarrollo de leches enriquecidas, Corporación Alimentaria Peñasanta (Capsa) presenta la que es su séptima referencia funcional -leche en polvo como soporte de un nuevo probiótico (Bifidobacterium longum ES-1)-, bautizada como 'Proceliac'. El producto, destinado al consumidor celiaco como complemento a su dieta libre de gluten, ha sido desarrollado por Biópolis -compañía de investigación participada por Capsa, la valenciana Naturex y el grupo de capital riesgo Talde -en colaboración con el Centro Superior de Investigaciones Científicas (Csic). Tras su lanzamiento, no se descartan futuras ampliaciones de gama, con la posibilidad de desarrollar batidos o nuevos sabores, según ha manifestado el consejero delegado de Biópolis, Daniel Ramón.

A partir de hoy mismo, Capsa ha iniciado el reparto logístico del producto -presentado en un bote de 420 g a un precio de 9,9 €- cuya ubicación en el lineal dependerá de cada cadena de distribución y de cada centro. Potenciando sus referencias de mayor valor añadio,Capsa busca retribuir correctamente tanto al consumidor como a sus socios ganaderos, según ha explicado su consejero delegado Pedro Astals, en la actual situación de inviabilidad económica que vive buena parte del sector primario. 'Proceliac' se une así a las otras seis referencias enriquecidas que Capsa tiene ya en catálogo. A las tres iniciales (Fibra con regulaplus, Jalea Vital y Naturcol) se unieron después 'Calcio+', 'Sin Lactosa con Calcio' y 'Fibra con regulaplus 0% de materia grasa'.

El CSIC crea un probiótico para celiacos

29/11/2012 - El MUNDO

Proceliac es el primer alimento funcional para celiacos. Fruto de la colaboración entre el CSIC y dos empresas españolas –Biópolis y CAPSA–, este preparado lácteo llega al mercado con la promesa de «mejorar la calidad de vida» del colectivo.

CAPSA, CSIC y Biopolis lanzan un probiótico en leche en polvo

28/11/2012 - Lavanguardia

La Corporación Alimentaria Peñasanta (CAPSA); el Consejo Superior de Investigaciones Científicas (CSIC) y su compañía 'spin off' Biopolis han lanzado al mercado un probiótico en leche en polvo que baja la inflamación intestinal de los celiacos. A pesar de que 'Proceliac', que contiene la bacteria 'Bifidobacterium longum ES-1', tiene este efecto positivo sobre los pacientes de la enfermedad celiaca, éstos deben seguir realizando dieta libre de gluten, ya que esta patología "no tiene tratamiento", explica el consejero delegadode Biopolis, Daniel Ramón. De cualquier forma, sostiene que este "es un producto pionero en el mundo".

Los celiacos tienen una composición de flora microbiana del tracto digestiva "distinta" a la de las personas sanas a pesar de que no consuman gluten, de ahí la inflamación. En concreto, tienen un incremento de bacteroides y patógenos, los cuales "se reducen con el probiótico", explica el experto.

CSIC, BIOPOLIS y CAPSA lanzan un probiótico en leche en polvo que baja la inflamación intestinal de los celiacos

28/11/2012 - EUROPA PRESS

Su objetivo es complementar la dieta libre de gluten y aportar un mayor grado de
protección a la mucosa intestinal.

CSIC, Biopolis y CAPSA lanzan un probiótico en leche en polvo que baja la inflamación intestinal de los celiacos

28/11/2012 - Diario Siglo XXI

Su objetivo es complementar la dieta libre de gluten y aportar un mayor grado de
protección a la mucosa intestinal.

Llega al mercado Proceliac, una leche en polvo que reduce la inflamación intestinal en los celíacos

29/11/2012 - infoceliaco.com

Acaba de presentarse en sociedad Proceliac, una nueva leche en polvo comercializada por Central Lechera Asturiana que contiene un novedoso probiótico que educe la inflamación intestinal en los celíacos. Se trata de la bacteria Bifidobacterium longum ES-1, desarrollada por el Consejo Superior de Investigaciones Científicas (CSIC), y que se ha convertido en un producto pionero en el mundo.

CAPSA, CSIC y Biopolis lanzan un probiótico en leche en polvo que baja la inflamación intestinal de los celiacos

28/11/2012 - http://www.20minutos.es/noticia/1662019/0/

La Corporación Alimentaria Peñasanta (CAPSA); el Consejo Superior de Investigaciones Científicas (CSIC) y su compañía 'spin off' Biopolis han lanzado al mercado un probiótico en leche en polvo que baja la inflamación intestinal de los celiacos.

Desarrollan un probiótico activo contra infecciones por rotavirus

16 Febrero 2012 - Europapress

Un equipo de investigadores de la empresa española Ordesa ha patentado un probiótico activo contra infecciones por rotavirus.

I+D+i en alimentación

23 Abril 2011 - la vanguardia

Varias empresas colaboran en la investigación de dietas para mayores.

Entrevista Daniel Ramón Vidal

Eureka-revista digital

"El consumidor europeo está confundido con qué es bueno y malo en alimentación"

Daniel Ramón: «Si la gente comiera bien no harían falta alimentos funcionales»

05 Junio 2009 - lne

El investigador valenciano señala en Oviedo que los consumidores quieren productos exóticos, étnicos y divertidos.

Daniel Ramón: ´El científico debe patear las empresas para conocer sus necesidades´

20 Enero 2008 - Levante

Profesor de investigación del Instituto de Agroquímica y Tecnología de los Alimentos del CSIC, en Paterna, Daniel Ramón (valenciano de 48 años) ha recibido esta semana el premio Juan de la Cierva en Transferencia de Tecnología por su "brillante" trayectoria investigadora en biotecnología de alimentos y transferencia empresarial.

El investigador Daniel Ramón gana el Juan de la Cierva

05 Octubre 2007 - El País

Daniel Ramón, investigador del Instituto de Agroquímica y Tecnología de los Alimentos, una institución valenciana del Centro Superior de Investigaciones Científicas (CSIC), ganó ayer el premio Juan de la Cierva en la categoría de Transferencia Tecnológica.

Daniel Ramón Vidal, consejero delegado de Biopolis:

Julio/Agosto 2010 - Navegando

“Conocemos perfectamente la realidad del sector agroalimentario y sus necesidades”

La biotecnología valenciana, referente del sector en España

30 Septiembre 2007 - Las Provincias

La valenciana Biopolis ha creado Biopolis Clinical y cierra el círculo de desarrollo de un elemento funcional a lo largo de todo el proceso.

Biopolis and Metabolon engage into a collaboration to enhance the use of global metabolism analysis tools

24 Mayo 2011 - valencianbiotechnology

Biopolis (www.biopolis.es) is located in the Science Park of the University of Valencia and specializes in the development and production of microorganisms, yeasts, enzymes and proteins, for their use in industrial sectors including food, agrochemicals, environment, fine chemistry and medicine.

Biopolis salta a la producción industrial para crecer

20/11/2012 - Expansion

La firma completará el I+D para multinacionales de alimentación, químicas y farmacéuticas con su fabricación de microorganismos a medida.

Biopolis, la primera empresa creada por el Centro Superior de Investigaciones Científicas.

(Csic) junto con socios privados, quiere dar un paso más para completar el ciclo de investigación y desarrollo de soluciones basadas en microrganismos para grandes compañías de sectores como la alimentación, la química, el farmacéutico o la energía. La compañía valenciana dará el salto a la producción de bacterias y microorganismos de forma industrial aprovechando su planta con capacidad para fermentación de nueve mil litros, una forma de optimizar unos equipos que hasta ahora se utilizaban a escala preindustrial para comprobar la viabilidad económica en la producción de sus desarrollos.

La Fe y Biopolis estudian alimentos que retrasen el envejecimiento

20 Mayo 2010 - Levante

El investigador José Luis Mullor utilizará embriones del pez medaka para reproducir enfermedades.

Garrigues y Biopolis se unen para desarrollar la industria de la alimentación funcional

14 Febrero 2008 - Garrigues

El despacho Garrigues, a través de su departamento de Biotecnología, y la empresa Biopolis han firmado esta mañana un acuerdo de colaboración cuyo objetivo es ofrecer un asesoramiento integral a la industria alimentaria para dar solución a las cuestiones suscitadas por la reciente y complicada normativa vigente, especialmente en el ámbito de la alimentación funcional (alimentos con propiedades saludables).

Biopolis produce alimentos funcionales con microorganismos

13 Febrero 2006 - Las Provincias

La firma valenciana Biopolis está elaborando microorganismos específicos cuyos principios activos permiten la mejora y provocan efectos beneficiosos en alimentos, medicamentos y otros productos, según informó el investigador Ignacio González.

Biopolis investiga con un gusano sustancias contra la obesidad y el Alzheimer

12 Mayo 2009 - Diariocrítico

La empresa de biotecnología microbiana Biopolis, ubicada en el Parque Científico de la Universidad de Valencia, ha conseguido una alternativa al "ratón de laboratorio" en un gusano de 1 milímetro de largo, denominado ´Caenorhabditis elegans´.

Biopolis investiga, gracias a un gusano, sustancias contra la obesidad, el envejecimiento y el Alzheimer

12 Mayo 2009 - solociencia

La empresa de biotecnología microbiana Biopolis, ubicada en el Parque Científico de la Universidad de Valencia, ha conseguido una alternativa al "ratón de laboratorio" con un gusano de 1 milímetro de largo, denominado 'Caenorhabditis elegans', según informaron hoy fuentes de la compañía

La biotecnológica participada por Capsa amplía capital e impulsa nuevos proyectos

06 Febrero 2008 - Ine

Biopolis, compañía especializada en desarrollos para alimentos probióticos y funcionales, se dota de instalaciones de producción y accede a otros sectores.

Los Príncipes visitan la empresa Biopolis S.L, participada por el CSIC

04 Septiembre 2009 - Csic

El investigador Daniel Ramón, director científico de la compañía, ha mostrado las instalaciones a sus Altezas Reales. El CSIC también cuenta en el Parc Científic con dos centros de investigación de referencia en Física y Tecnología de Alimentos.

Las nuevas reglas de etiquetado atienden salud y nutrición

01 Julio 2007 - Las Provincias

La firma valenciana Biopolis ve con satisfacción la normativa que entra en vigor esta semana tras años de indefinición en el sector agroalimentario.

© BIOPOLIS, S.L. · Parc Científic de la Universitat de València · info@biopolis.es · T +34 96 316 02 99 · Legal notice